Jeremy Brown
Professor, Department of Electrical and Computer Engineering, School of Biomedical Engineering

Our lab designs and fabricates high-frequency array-based ultrasound transducers and electronics, with applications ranging from small animal imaging to neurosurgical guidance. We operate a clean room fabrication facility at the Nova Scotia Health Authority where ultrasound probes are designed, built and tested. We also design an fabricate a wide variety of low frequency ultrasound transducers for therapeutic applications.
Our Group
Research in our laboratory is focused on the design, fabrication, and testing of ultrasonic frequency piezoelectric transducers and associated electronic hardware for medical applications. Specifically, we are focused on developing miniaturized ultrasound imaging endoscopes and miniaturized ultrasound therapeutic devices using an in house micro-fabrication facility targeting minimally invasive surgical applications.
Minimally invasive surgical approaches in comparison to open surgery, offer drastically improved patient outcomes including less blood loss, fewer complications, reduced recovery time, and a reduced chance of infection. To allow more procedures to be performed as minimally invasive, it鈥檚 important to develop new surgical tools specific to the minimally invasive surgical procedure. As these procedures are almost always performed through a very small incision or access route, the associated tools must be developed in a miniaturized form factor.
Projects
听 | Neuroimaging endoscope Typical high-frequency ultrasound resolution of 30-100 microns can be achieved in soft tissue over a penetration depth of 10-20 mm.听 The short penetration depth and high resolution, make high-frequency ultrasound particularly suitable for use in guided endoscopic surgery. In these minimally invasive procedures, a set of surgical instruments are inserted into a small incision site along with a set of imaging tools, typically endoscopic optical cameras and light sources.听 The entire surgical procedure is done solely under image guidance.听 Such an approach has become standard of care for a very large number of surgical procedures including those of the brain, colon, pancreas, uterus, bowel, etc. Our group has developed a high-frequency array-based forward-looking ultrasound endoscope, that is suitable for guiding endoscopic procedures and providing depth resolved information. The packaged form factor for this imaging array has been miniaturized down to just a few millimetres. We are currently evaluating the miniature high resolution imaging endoscope in a series of pre-clinical in-vivo neuroimaging studies. 听 |
听 | Miniature Histotripsy Transducer Currently, two ultrasound based non-invasive surgical techniques are available: high-intensity focused ultrasound (HIFU) and histotripsy. Where HIFU uses a highly focused ultrasound transducer to cause tissue necrosis through thermal means, histotripsy, using a similar transducer, causes tissue fractionation through short bursts of high pressure pulses, where the destruction is caused by inducing and collapsing cavitation bubbles. Histotripsy, being a relatively new area of ablation research, has just started the first r |